Skip to Main Content

Publications

For the most up-to-date list, see the arXiv.

  1. Ada Warren, Utkan Güngördü, J. P. Kestner, Edwin Barnes, Sophia E. Economou, Robust photon-mediated entangling gates between quantum dot spin qubits, arXiv:2101.11579 (2021).
  2. David W. Kanaar, Sidney Wolin, Utkan Güngördü, J. P. Kestner, Single-tone pulse sequences and robust two-tone shaped pulses for three spin qubits with always-on exchange, arXiv:2101.08840 (2021).
  3. Guo Xuan Chan, J. P. Kestner, Xin Wang, Nearly sweet spots in capacitively coupled singlet-triplet spin qubits under magnetic field, arXiv:2011.09387 (2020).
  4. Utkan Gungordu and J. P. Kestner, Robust quantum gates using smooth pulses and physics-informed neural networks, arXiv:2011.02512 (2020).
  5. A. A. Setser and J. P. Kestner, Local gradient optimization of leakage-suppressing entangling sequences, Phys. Rev. A 103, 012609 (2021).
  6. Seongjin Ahn, S. Das Sarma, J. P. Kestner, Microscopic bath effects on noise spectra in semiconductor quantum dot qubits, Phys. Rev. B 103, L041304 (2021).
  7. Ralph Colmenar and J. P. Kestner, Simulated Randomized Benchmarking of a Dynamically Corrected Cross-Resonance Gate, Phys. Rev. A 102, 032626 (2020).
  8. Utkan Gungordu and J. P. Kestner, Robust implementation of quantum gates despite always-on exchange coupling in silicon double quantum dots, Phys. Rev. B 101, 155301 (2020).
  9. Utkan Gungordu and J. P. Kestner, Analytically parameterized solutions for robust quantum control using smooth pulsesPhys. Rev. A 100, 062310 (2019).
  10. A. A. Setser and J. P. Kestner, Rapid adiabatic gating for capacitively coupled quantum dot hybrid qubits without barrier control, Phys. Rev. B 99, 195403 (2019).
  11. Utkan Gungordu and J. P. Kestner, Indications of a soft cutoff frequency in the charge noise of a Si/SiGe quantum dot spin qubit, Phys. Rev. B 99, 081301(R) (2019).
  12. Ralph Colmenar and J. P. Kestner, Stroboscopically robust operating points for entangling operations, Phys. Rev. A 99, 012347 (2019).
  13. Utkan Güngördü and J. P. Kestner, Pulse sequence designed for robust C-phase gates in SiMOS and Si/SiGe double quantum dotsPhys. Rev. B 98, 165301 (2018).
  14. A. A. Setser, M. H. Goerz, and J. P. Kestner, Local gradient optimization of modular entangling sequencesPhys. Rev. A 97, 062339 (2018).
  15. F. A. Calderon-Vargas and J. P. Kestner, Entanglement dynamics of two Ising-coupled qubits with non-perpendicular local driving fieldsPhys. Rev. B 97, 125311 (2018).
  16. M. A. Wolfe, F. A. Calderon-Vargas, J. P. Kestner, A robust operating point for capacitively coupled singlet-triplet qubits, Phys. Rev. B 96, 201307(R) (2017).
  17. F. A. Calderon-Vargas and J. P. Kestner, Dynamically correcting a CNOT gate for any systematic logical error, Phys. Rev. Lett. 118, 150502 (2017).
  18. Xiao Li, Edwin Barnes, J. P. Kestner, S. Das Sarma, Intrinsic errors in transporting a single-spin qubit through a double quantum dot, Phys. Rev. A 96, 012309 (2017).
  19. Yang Song, J. P. Kestner, Xin Wang, S. Das Sarma, Fast control of semiconductor qubits beyond the rotating-wave approximation, Phys. Rev. A 94, 012321 (2016).
  20. Fernando A. Calderon-Vargas and J. P. Kestner, Directly accessible entangling gates for capacitively coupled singlet-triplet qubits, Phys. Rev. B 91, 035301 (2015).
  21. Xin Wang, Fernando A. Calderon-Vargas, Muhed S. Rana, J. P. Kestner, Edwin Barnes, and S. Das Sarma, Noise-compensating pulses for electrostatically controlled silicon spin qubits, Phys. Rev. B 90, 155306 (2014).
  22. Setiawan, Hoi-Yin Hui, J. P. Kestner, Xin Wang, and S. Das Sarma, Robust Two-Qubit Gates for Exchange-Coupled Qubits, Phys. Rev. B 89, 085314 (2014).
  23. Xin Wang, Lev S. Bishop, Edwin Barnes, J. P. Kestner, and S. Das Sarma, Robust quantum gates for singlet-triplet spin qubits using composite pulses, Phys. Rev. A 89, 022310 (2014).
  24. Erik Nielsen, Edwin Barnes, J. P. Kestner, and S. Das Sarma, Six-electron semiconductor double quantum dot qubits, Phys. Rev. B 88, 195131 (2013).
  25. G. T. Hickman, Xin Wang, J. P. Kestner, and S. Das Sarma, Dynamically corrected gates for an exchange-only qubit, Phys. Rev. B 88, 161303(R) (2013).
  26. J. P. Kestner, Xin Wang, Lev S. Bishop, Edwin Barnes, and S. Das Sarma, Noise-resistant control for a spin qubit array, Phys. Rev. Lett. 110, 140502 (2013).
  27. Xin Wang, Lev S. Bishop, J. P. Kestner, Edwin Barnes, Kai Sun, and S. Das Sarma, Composite pulses for robust universal control of singlet-triplet qubits, Nat. Commun. 3, 997 (2012).
  28. E. Barnes, J. P. Kestner, N.T.T. Nguyen, and S. Das Sarma, Screening of charged impurities with multi-electron singlet-triplet spin qubits in quantum dots, Phys. Rev. B 84, 235309 (2011).
  29. T. Sedrakyan, J. P. Kestner, and S. Das Sarma, Proposed signature of Anderson localization and correlation-induced delocalization in an N-leg optical lattice, Phys. Rev. A 84, 053621 (2011).
  30. J. P. Kestner and S. Das Sarma, Proposed spin qubit CNOT gate robust against noisy coupling, Phys. Rev. A  84, 012315 (2011).
  31. J. P. Kestner, Bin Wang, Jay D. Sau, and S. Das Sarma, Prediction of a Novel Topological “Haldane Liquid” Phase in One-Dimensional Cold Polar Molecular Lattice, Phys. Rev. B 83, 174409 (2011).
  32. J. P. Kestner and S. Das Sarma, Compressibility, zero sound, and effective mass of a fermionic dipolar gas at finite temperature, Phys. Rev. A 82, 033608 (2010).
  33. J. P. Kestner and L.-M. Duan, Anharmonicity induced resonances for ultracold atoms and their detection, New J. Phys. 12, 053016 (2010).
  34. J. P. Kestner and L.-M. Duan, Effective single-band models for strongly interacting fermions in an optical lattice, Phys. Rev. A 81, 043618 (2010).
  35. J. P. Kestner and L.-M. Duan, Effective low-dimensional Hamiltonian for strongly interacting atoms in a transverse trap, Phys. Rev. A 76, 063610 (2007). [See also accompanying erratum.]
  36. J. P. Kestner and L.-M. Duan, Level crossing in the three-body problem for strongly interacting fermions in a harmonic trap, Phys. Rev. A 76, 033611 (2007).
  37. J. P. Kestner and L.-M. Duan, Conditions of low dimensionality for strongly interacting atoms under a transverse trap, Phys. Rev. A 74, 053606 (2006).